按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
威和中欧高地雨量过多,英、德、波等纬度 55o ,降水年 550 毫米,只供一季已
足,而南欧西班牙可种两季者则欠雨水;也比北美雨雪过多,年只一季,无济于 农者为好。
苏联、美国、加拿大三国耕地面积大,降水量及川流量皆比我国多。但其产
粮地区与我国对比,降水既少,年内分布又较均匀;气温较低,无霜期短,苏、
加年只一熟,美国纬度 37o 以北也只一熟,有效雨量又少,故其水资源或可能供
水量和实耗农业水量都远比我国为少。苏、加大量川流向北冰洋废弃,美国则向
东流入大西洋,秋冬雨雪虽多,但毫无用处。所谓多于我国之雨流都是弃水,而
非水资源。巴西、印尼多热带雨林,耕地较少,虽其雨量流量皆丰富,但其实际
利用的水量很少,不能与我国并论。故按耕地、气候和雨水三条件论农业水资源,
我国在全球之首,所谓第六者'1 ' ,乃指入海的剩余弃水量。
我国雨量流量的最大缺点是年际差异较他国为大,影响到农产年际不稳定。
79
欧美有从河槽水流估计水资源的,这是因为它们在每年只种一季农作用水已
满足的情形下,去考察一些川流是否满足工业和生活用水,特别是当枯水期水质
是否合格。在我国水资源用途是以每年两至三熟的农业为主,这与从河中汲水的 工业和生活用水迥异,问题不能相提并论。
美国东部大陆季风气候和我国相似,自中西部半世纪以来,农业大兴之后,
大片平地机耕成本低廉,是以东西沿海一带农业减退,而工业和生活用水大增。
这样在地区上划分水资源用途,估计用水量比较简明,和我国情形迥异。
在日本估 算 水资源也 是 用前述平 衡 方程的。 苏 人琼译自 日 本水资源 学 术会
《关于水资源学术会议文献》475 页所载:“日本年降水量 6000 亿吨,其中 2500
亿吨通过洪水损失掉,又 2000 亿吨通过蒸发损失掉,据说实际年可利用量为 1300
亿吨。目前利用水量中,生活用水 100 亿吨,工业用水 150 亿吨,农业用水 500
亿吨。共计 750 亿吨”。这里川流 2500 亿吨是作为弃水损失看待的,不象我国科
学院把它看作是水资源'1'。他们的年用水量仅 1300 亿吨,比我国科学院号称贫乏
的中国水资源年 2600 亿吨的错误值只有一半。
四、关于黄淮海流域水资源问题
我国淮河以南及西南各省水源丰富,支持现有人口绰绰有余;西北东北则天
寒水少,年仅一熟,地广人稀,口粮稍欠。总的说来,各地在耕地、气候和水源
三方面是配合谐和的,当然,南粮不免北运。惟有黄淮海地区,特别是黄河以北 海河流域缺水最甚,这里的水资源情况还须详细阐明。
黄淮海平原春季干旱,土壤多盐碱化。夏季雨量充沛,遇霪雨兼旬,即可酿
成洪灾。秋季沥雨,洼地成涝。越冬则地冻三尺,植物偃息。凡此四害,以旱盐
为甚,洪涝次之。论者多谓华北缺水,惟有仰给于江水北调。但依水文地理条件
论之,本域气候属半湿润温暖带,纬度 40o 左右,无霜期 220 天,年降水量 600
余毫米,光照充足,平原广大,地下有粗沙区可以储存夏水。小麦利用秋水育苗,
越冬复苏后,春水不足则可抽低地下储水,腾出空间以迎夏雨入渗。夏季雨多,
足供作物需水且有余。这是主水资源的垂直运行。若象欧美各国年只一季作物, 则自然降水就已足用。
为了增产,华北大部分地区力争两熟,因此用水不足。除了存去年夏水于地
下外,还有客水补给:这里西依太行,北仰燕山,南濒黄河,三面可有水自流接
济。卤水则可东排出海。如此优越的水土形势,真是天造地设,为全球所罕见。
80
问题的关键在于将黄河大堤设闸开口,而不设底槛,放水南北分流,淤灌华
北平原。同时抽排卤水,治海治淮,则旱碱洪涝皆得消除。而黄河治理恰恰又正
须分流,以刷深河槽,畅排洪流。当今治河坚持“拦排放”策略,试图由流水挟
沙出海。于是殃成了目前平原缺水缺有机肥,大运河不得通航。历来学者以知识
误国,其贻害之大,益未有甚于此者。黄河郑州以下广大三角洲就是靠它挟沙特 多所淤成,平原地广水少,理应以黄河水为客水资源。
参考文献
'1' 中国科学院技术科学部水利分组:中国水资源及其利用,1982 年。
'2' 张光斗、陈志恺:关于水资源问题及其解决途径,1989 年中国科学院技术
科学大会报告。
'3' 谢家泽、陈志恺:中国水资源,地理学报,第 45 卷,第 2 期,1990 年。
'4' 黄万里:增进我国水资源利用的途径,自然资源学报,第 4 期,1989 年。
ON THE RELATIONS AMONG PRECIPITATION,
RIVER FLOW AND WATER RESOURCES
Huang Wanli
(Tsinghua University)
Abstract
This paper points out the relations among precipitation; river flow in hydrologic
phenomena and the water resources utilized by mankind; presents a formula for
determining the quantity of water resources and argues that China is endowed with
the most abundance of water resources in the world which meets the prehensive
requirements because of the appropriate distribution of time and space。 This is
against the state published data of 2。7×1012 m3 for the average yearly quantity of
water resources considered to be in short and unappropriately distributed in time and
space。 The problem is worth while for public discussions; as it affects so much the
tactics of planning in hydraulic engineering。
81
The Velocity Profile Formula along Section
of Open Channel Flow Determined by the Law of
Maximum Rate of Energy Dissipation
William W。L。 Huang; M。C。E; Ph。D。
Professor Emeritus; Tsinghua University
Synopsis
This paper presents a formula of velocity profile along section of open channel
flow determined by the law of maximum rate of energy dissipation proposed by the
author in 1975。
The analysis partly follows the mixing length theory for turbulent flow in that
the length 1 is a dimensionless multiple of the depth y of the level of flow line; but
replaces the Karman constant k=0。4 by a variable η=η(y) which varies from 1 at
the bottom to 0 at the surface of flow。 The total rate of energy reserved in the section
shall invariable be a minimum。
The calculated velocity profile by the proposed formula has been checked
precisely by the experimental data measured by the U。S。 Geological Survey in
Denver; Colorado。 The discrepancy of results in using the Prandtl…Karman formula
with the measured data is manifested in parison。
Recapturation of Historical Development
Early in the 17th century numerous Italian and German engineers curiously
believed that the velocity in a vertical counting downward from the surface increased
with the depth even firmed by fallacious experiments。 In 1848; Dupuit developed
from theoretical consideration the equation
82
u = u
max
? (u
max
? y ?
)
? umin ? ?
? h ?
Until 1858; Bazin; an assistant to D’ Arcy; developed the parabolic curve of velocity
profile from results of experiments in the middle of a natural river。 The equation
proposed was
2
u ? u
? y ?
max = 20? ?
hJ ? h ?
in which u is the velocity of flow at the depth y; h… the maximum depth; J – the slope。
Later; Pressey; in America; Jasmund and Bolte; in Germany; improved the
Bazin’s result of the constancy of the value 20 by introducing the effect of the
roughness of channel on the increase of curvature of the profile。 R。Jasmund (1893 –
97) examined 445 velocity profiles based on his observations on the Elbe。 He
proposed four types of curves; i。e。; parabolas with horizontal and vertical axes;
hyperbola and logarithmic curves for trials in fitting the data; and concluded that the
latter was the best fit:
u = a + b lg ( y + c )
where a; b; and c are constants for a particular stream。
Not until 1883; when the essence of turbulent vs。laminar flows was fully
understood through the works of O。 Reynolds; different formulas were developed for
the two regimes。 The Prandtl…Karman semi…rational approach to the logarithmic
formula for turbulent flow has been popularly accepted。
Nevertheless; the distribution of velocity along a vertical of flow still remains
void of reason。 The subject; however; is of wide interest to hydraulics in practice; so
as to answer the requirement of verifying the Prandtl…Karman formula; as well as to
the mechanics of sediment transport which is closely related to the shape of the
vertical velocity curve。
On the Inconsistencies in the Prandtl…Karman Analysis
L。 Prandtl and Th。 von Karman have successively developed the mixing length
theory and velocity deficiency Law of turbulent pipe flow by coordinating theoretical
analysis partially with experimental research。 Nevertheless;