按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
了最最牢固的成分。
最后,在十九世纪的自然科学中,另一个二重性起了某种作用,这就是物质和力之间的二重性。物质是能够承受力的东西;或者说,物质能够产生力。譬如,物质产生引力,而这种力又作用在物质上。物质和力是有形体世界两个显然不同的方面。就力可能是造形力来说,这个区别更接近于亚里士多德的物质与形式的区别。另一方面,在现代物理学的最近发展中,物质与力之间的这种区别完全丧失了,因为每个力场包含了能量,因而也就构成了物质。对于每一种力场,都有一种特殊的基本粒子隶属于它,这种基本粒子在本质上和物质的一切其他原子单位具有相同的性质。
当自然科学研究物质伪问题时,它只有通过对物质的形式的研究才能进行。物质形式的无穷多样性和易变性必定是研究的直接对象,而努力必定是朝向寻求若干自然律、某些能作为通过这个广大领域的向导的统一原理。因此,长时期以来,自然科学——特别是物理学——的兴趣就集中在关于物质结构的分析和关于促使形成这些结构的力的分析。
自从伽利略的时代以来,自然科学的基本方法就一直是实验。这种方法使它能从一般经验推移到特殊的经验,从自然中挑选出有特征性的事件,从这些事件中能够比从一般经验中更直接地研究自然“定律”。如果人们要研究物质结构,人们必须拿物质做实验。人们必须让物质处于极端条件下,以便研究它在那种条件下的嬗变,期望发现在一切明显的变化中都保持着的物质的基本特征。
在现代自然科学的早期,这是化学的对象,而这方面的努力颇早就导致化学元素的概念。一种物后,不能由化学家处置的任何方法——沸腾、燃烧、溶解、和其他物质混合等等——进一步离解或分化的,称为一种元素。引入这个概念是走向了解物质结构的第一步,也是最重要的一步。至少,物质的巨大多样性归结为比较少量的更基本的物质——“元素”了,从而在化学的各种现象中能够建立某种秩序了。“原子”一词用来表示属于一个化学元素的物质的最小单位,而化合物的最小颗粒能用一小团不同的原子来描绘。例如,铁元素的最小颗粒是铁原子,而水的最小颗粒是水分子,由一个氧原子和两个氢原子组成。
第二步并且是同样重要的步骤是化学过程中质量守恒的发现。例如,当碳元素烧成二氧化碳时,二氧化碳的质量等于化合过程发生前碳和氧的质量之和。正是这个发现给予物质概念以定量的意义;物质能用它的质量来度量,而与它的化学性质无关。
在后一个时期,主要是十九世纪,发现了许多新的化学元素;在今天,这个数量已到达一百个。这种发展十分清楚地表明,化学元素的概念尚未到达人们能够理解物质统一性的地步。要人相信世界上有许多种类的物质,它们在性质上互不相同,并且相互之间没有任何联系,这是不能令人满意的。
在十九世纪的开始,从不同元素的原子量常常似乎是一个最小单位(接近氢的原子量)的整数倍这样一个事实中,发现了不同元素间的联系的某种迹象。某些元素的化学行为的类似性是引向同一个目标的另一个暗示。但只有通过比化学过程中的作用力强得多的力的发现,才能真正建立起不同元素间的联系,从而引导到物质的更严密的统一。
这些力在1896年贝克勒耳发现的放射性过程中确实发现了。由居里、卢瑟福和其他人继续进行的研究,揭示了放射过程中元素的婚变。在这些过程中发射出 α粒子,它们是原子的碎片,带有差不多比化学过程中单个原子粒子的能量大一百万倍以上的能量。因此,这些粒子可以用作研究原子内部结构的新工具。卢瑟福从α射线散射实验的结果得出了 1911年有核的原子模型。这个著名的模型的最重要特征是原子分成两个截然不同的部分:原子核和周围的电子居。在原子中心的原子核只占有原子所占空间的非常小的一部分(它的半径小于原子半径的十万分之一),但却几乎包含了原子的全部质量。它的正电荷是所谓基元电荷的整数倍,它决定了周围电子的数目——整个原子在电的性质上是中性的——和它们的轨道形状。
原子核和电子展之间的这种区分,立即给下面的事实作出了适当的解释,这事实就是:对于化学来说,化学元素是物质的最终单位,要使化学元素相互转化,就需要强得多的力。相邻原子间的化学键是由于电子壳层的相互作用,而这种相互作用的能量是比较小的。在一个放电管中,用只有几伏特的电势加速了的一个电子,就有足够的能量将电子壳层激发到发射辐射,或破坏分子中的化学键。但是,原子的化学行为虽然是由原子的电子壳层的行为所构成的,但却取决于原子核的电荷。如果人们要改变原子的化学性质,就必须改变原子核,而这需要差不多一百万倍以上的能量。
然而,如果把有核的原子模型设想为一种服从牛顿力学的系统,那就不能解释原子的稳定性。如前一章所指出,只有通过玻尔的工作,将量子论应用到这个模型上,才能解释如下的事实:例如,一个碳原子在与其他原子作用以后,或者在发出辐射以后,最后总仍然保持为一个带有以前一样的电子壳层的碳原子。这种稳定性只能由量子论的这样一些特征来解释,这些特征不容许以空间和时间对原子结构进行简单的客观描述。
这样,人们终于有了理解物质的第一个基础。原子的化学性质和其他性质,可以通过把量子论的数学方案应用到电子壳层上而加以说明。从这个基础出发,人们可以尝试从两个相反方向扩展物质结构的分析。人们或者可以研究原子间的相互作用、它们与分子或晶体或生物学对象等更大单位的关系;或者可以尝试通过原子核与其组成部分的研究,深入到物质的最终单位中去。过去十年中,研究工作在这两条路线上都有了进展,下面我们将讨论量子论在这两个领域中的作用。
两个邻近原子间的力首先是异性相吸和同性相斥的电力;电子受到原子核的吸引,电子与电子又相互排斥。但这些力不按照牛顿力学定律起作用,而是按照量子力学定律起作用。
这导致原子之间两种不同类型的结合。在一种类型中,一个原子的电子跑到另一个原子中,例如,去填满一个几乎闭合的电子壳层。在这种情况下,两个原子最后都带电,而形成物理学家所谓的离子,并且因为它们的电荷是相反的,他们互相吸引。
在另一种类型中,一个电子以量子论所特有的方式同时属于两个原子。利用电子轨道的图象,人们可以说电子围绕着两个原子核旋转,并在每一个原子中都逗留相当的时间。这第二种结合类型相当于化学家所称的共价键。
这两类力可以以任何混合的形式发生,而促使各种原子团的形成,并且似乎是物理学和化学中研究的大量物质的一切复杂结构的最终原因。化合物的形成是通过包含不同原子的小的闭合原子团的形成而发生的,每个原子团是化合物的一个分子。晶体的形成是由于原子排列成规则的点阵。当原子是如此紧密地排列着,以致它们的外层电子能够离开它们的壳层而在整个晶体中移动时,就形成了金属。磁性是由于电子的自旋运动引起的,如此等等。
在所有这些例子中,物质与力之间的二重性仍能保持,因为人们可以认为原子核与电子是由电磁力联结在一起的物质的碎片。
这样,物理学与化学在它们与物质结构的关系方面差不多完全联合起来了,而生物学则处理更为复杂的并多少有所不同的类型的结构。确实,虽然生命机体是一个整体,生命物质与非生命物质的严格界线仍然是无法作出的。生物学的发展为我们提供了大量例子,在这些例子中人们可以看到,特殊的大分子或大分子团或链具有特殊的生物学功能,并且在现代生物学中有着一种日益增长的把生物学过程解释为物理学与化学定律的结果的趋势。但是生命机体显示的稳定性的类型在本质上多少与原子或晶体的稳定性有所不同。这与其说是形式的稳定性,不如说是过程式功能的稳定性。无疑的,量子论定律在生物学现象中起着很重要的作用。例如,只能用化学价的概念不准确地描述的那些特殊的量子理论性的力,对于了解大的有机分子和它们的各种各样的几何形式是不可缺少的;辐射引起生物学突变的实验,既显示了统计量子理论定律的关联,又显示了放大机构的存在。我们的神经系统的工作与现代电子计算机的功能之间的极其类似,又一次说明了在生命机体中单个基元过程的重要性。然而所有这些并不足以证明物理学、化学以及进化概念有朝一日将提供生命机体的完全描述。实验科学家在探讨生物学过程时,必须比探讨物理学和化学更要小心翼翼。“正如玻尔所指出,很可能,从物理学家的观点看来可以称为完全的那种对生命机体的描述是不能作出的,因为这需要一些十分强烈地干预生物学功能的实验。玻尔曾经描述了这种状况,他说,在生物学中,同我们发生关系的,与其说是我们自己所能完成的各种实验的结果,不如说是我们所属的自然界中各种可能性的表示。这种表述所暗示的互补状况在现代生物学研究方法中被描述为一种倾向,这种倾向一方面充分利用了全部的物理学和化学的方法与结果,另一方面,是奠基于有机界的不包含于物理学和化学中的那些特征的概念,例如生命的概念等等。
到这里,我们追踪了一个方向的物质结构分析;从原子到包括许多原子的更复杂的结构;从原子物理学到固体物理,到化学和生物学。现在我们必须转向相反的方向,并且追随从原子外部到内部和从原子核到基本粒子的研究路线。正是这条路线可能导致对物质统一性的理解。这里我们不需要害怕我们的实验会破坏了特征性的结构。当提出的任务是试验物质的最终统一性时,我们可以将物质置于尽可能强的力之前,置于最极端的条件下,以便看一看是否任何物质最终能够增变为任何其他物质。
这个方向的第一步是对原子核的实验分析。在差不多充满于本世纪的头三十年内的这些研究的初始时期中,唯一对原子核运用的实验工具是放射性物质所发出的α粒子。卢瑟福在
1919年利用这些粒子成功地促成了较元素原子核的嬗变;例如,他能使一个氮原子核嬗变为氧原子核,方法是在氮原子核中加一个α粒子同时打出一个质子,这是使人联想起化学变化过程的原子核范围的变化过程的第一个例子,它导致元素的人为嬗变。第二个实质性的进展是,如所周知,用高压装置把质子人工加速到足以促使原子核嬗变的能量。为此目的,差不多需要一百万伏特,而考克饶夫(Cockcroft)和瓦尔顿(Walton)在他们的第一次决定性实验中就成功地使银原子核嬗变成为氧核。这个发现开辟了一条全新的研究路线