友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
次次小说 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

清史稿(下)-第592章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



经、传所书,质其合否,乃知有经误、传误及术误之分。”又谓:“尚书克殷年月,郑玄据乾凿度,以入戊午蔀四十二年克殷,下至春秋,凡三百四十八年。刘歆三统术以为积四百年,近人钱塘李锐皆主其说。今以时宪术上推,且以岁星验之,始知郑是刘非。”其解孟子“由周而来,七百有馀岁”句,谓阎百诗孟子生卒年月考据大事记及通鉴纲目,以孟子致为臣而归在周赧王元年丁未,逆数至武王有天下,岁在己卯,当得八百有九年。然周共和以上年数,史迁已不能纪,可考者鲁世家耳,此为刘歆历谱所据。然将歆谱与史记比对,歆於炀公、献公等年分多所加,共计五十二。若减其所加,则歆所谓八百有九年者,实七百五十七年耳。斋
又谓又谓向来注经者,於算学不尽精通,故解三礼制度多疏失,因作深衣考,以订江永之谬。作戈戟考,以指程瑶田之疏。以文选景福殿赋“阳马承阿”证古宫室阿栋之制。以体积论樐氏为量,以重心论悬磬之形,皆绘图立说,援引详明。古
又尝又尝谓群经注疏引算术未能简要,甄鸾五经算术既多疏略,王伯厚六经天文篇博引传注,亦无辨证。因即经义中有关於天文、算术,为先儒所未发,或发而未阐明者,随时录出,成学计一得二卷。知
天象天象著甲寅恆星表、赤道星图、黄道星图各一卷,自序略曰:“甲寅春,制浑球,以考证经史恆星出没历代岁差之故。然制器必先绘图,绘图必先立表,此恆星表之所由作也。史、汉、晋、隋诸志,於恆星但言部位,至唐、宋始略有去极度数,盖旧传新图,大抵据步天歌意想为之,与天象不符。国朝康熙初,南怀仁作灵台仪象志,然后黄、赤经、纬各列为表。乾隆九年,增修仪象考成,补正缺误。道光甲辰,再加考测,为仪象考成续编,入表正座一千四百四十九星,外增一千七百九十一星,洵为明备。今逾十载,岁渐有差,故复据现时推测立表,庶绘图制器密合天行也。”知
又谓又谓:“绘地难於算天,天文可坐而推,地理必须亲历。近人不知古法,故疏舛失实。因考求地理沿革,为历代地图,以补史书地志之缺。”斋
又手又手摹皇舆全图,自序略曰:“地图以天度画方,至当不易。地球经纬相交皆正角,而世传舆图,至边地竟成斜方形,殊失绘图原理,其蔽在以纬度为直线也。昔尝为小总图,依浑盖仪,用半度切线,以显迹象。然州县不备,且内密外疏,容与实数不符,故复为此图。其格纬度无盈缩,而经度渐狭,相视皆为半径与馀弦之比例。横九幅,纵十一幅,合成地球滂沱四颓之形,欲使所绘之图与地相肖也。知
又变又变西人之旧,作地球正变两面全图,其序略曰:“地形浑员,上应天度,经纬皆为员线。作图者绘浑於平,须用法调剂,方不失其形似。然视法有三,其一在员外视员,法用正弦,则经圈为橢员,纬圈为直线,其形中广旁狭,作简平仪用之。其一在员心视员,法用正切,则经圈为直线,纬圈为弧线,其形中曲旁杀,内密外疏,作日晷用之。斯二者,线无定式,量算繁难。且经纬相交,不成正角。其边际或太促褊,或太展长,以画地球,既昧方斜本形,复失修广实数,所不取也。其一在员周视员,法用半切线,经纬圈皆为平员,虽亦内密外疏,而各能自相比例,西人以此作浑盖仪,最为理精法密。今本之为地球图,分正背两面。正面以京师为中线,其背面之中,即为京师对冲之处,尊首都也。旁分二十四向,审中土与各国彼此之势,定准望也。经纬俱以十度为一格,设分率也。”斋
因推因推演其法,著测量备要四卷,分备物致用、按度考数二题。备物致用其目四:一丈量器,曰插标、曰线架、曰指南尺、曰曲尺、曰丈竹、曰竹筹、曰皮活尺、曰蕃纸簿、曰铅笔;二测望仪,曰指南分率尺、曰立望表、曰三脚架、曰矩尺、曰地平经仪、曰平水准、曰纪限仪、曰回光环、曰折照玻璃屋、曰千里镜、曰象限仪、曰秒分时辰标、曰行海时辰标、曰析分大日晷、日风雨针、曰寒暑针;三检覈书,曰志书、曰地图、曰星表、曰星图、曰度算版、曰对数尺、曰八线表、曰八线对数表、曰十进对数表,曰现年行海通书、曰清蒙气差表、曰太阳纬度表、曰日晷时差表、曰句陈四游表、曰大星经纬表、曰对数较表、曰对数较差表;四画图具,曰大小幅纸、曰砚、曰墨、曰硃、曰颜色料、曰笔、曰五色铅笔、曰笔壳、曰指南分率矩尺、曰长短界尺、曰平行尺、曰分微尺、曰机翦、曰交连比例规、曰玻璃片、曰橡皮。古
按度按度考数其目四:一明数,曰尺度考、曰亩法、曰里法、曰方向法、曰经纬里数;二步量,曰量田计积、曰步地远近、曰记方向曲折、曰认山形、曰准望所见;三测算,曰测量方向远近法、曰测地纬度法、曰论平阳大海地平界角、曰测地经度法、曰经纬方向里数互求法;四布图,曰正纸幅、曰定分率、曰缩展、曰识别设色。斋
又因又因修改对数表之根求析小术,是开极多乘方法,可径求自然对数,即讷对数,以十进对数根乘之即得十进对数,著乘方捷术三卷。知
又创又创对数尺,盖因西人对数表而变通其用,画数於两尺,相并而伸缩之,使原有两数相对,而今有数即对所求数。一曰形制,二曰界画,三曰致用,四曰诸善,五曰图式,为记一卷。主
又尝又尝撰格术补一卷,同郡陈澧序之,略曰:“格术补者,古算家有格术,久亡,而吾友邹徵君特夫补之也。格术之名,见梦溪笔谈,其说云:‘阳燧照物,迫之则正,渐远则无所见,过此则倒,中间有碍故也。如人摇舻,臬为之碍,本末相格,算家谓之格术。’又云:‘阳燧面洼,向日照之,则光聚向内,离镜一二寸,聚为一点,著物火发。’笔谈之说,皆格术之根源也。宋以前盖有推演为算书者,后世失传,遂无有知此术者。徵君得笔谈之说,观日光之景,推求数理,穷极微眇,知西人制镜之法皆出於此。乃为书一卷,以补古算家之术。盖古所谓阳燧者,铸金以为镜也,西洋铁镜,即阳燧,玻璃为镜,亦同此理。故推阳燧之理,可以贯而通之。有此书而古算家失传之法复明,可知西人制器之法,实古算家所有,此今世之奇书也。至若古算失传,如此者当复不少,吾又因此而感慨系之矣!”斋
同治同治三年,郭嵩焘特疏荐之,坚以疾辞。曾国籓督两江日,欲以上海机器局旁设书院,延伯奇以数学教授生徒,亦未就。八年五月,卒,年五十有一。知
李善李善兰,字壬叔,海宁人。诸生。从陈奂受经,於算术好之独深。十岁即通九章,后得测圆海镜、句股割圜记,学益进。疑割圜法非自然,精思得其理。尝谓道有一贯,艺亦然。测圆海镜每题皆有法有草,法者,本题之法也;草者,用立天元一曲折以求本题之法,乃造法之法,法之源也。算术大至躔离交食,细至米盐琐碎,其法至繁,以立天元一演之,莫不能得其法。故立天元一者,算学中之一贯也。并时明算如钱塘戴煦,南汇张文虎,乌程徐有壬、汪曰桢,归安张福僖,皆相友善。咸丰初,客上海,识英吉利伟烈亚力、艾约瑟、韦廉臣三人,伟烈亚力精天算,通华言。善兰以欧几里几何原本十三卷、续二卷,明时译得六卷,因与伟烈亚力同译后九卷,西士精通几何者尟,其第十卷尤玄奥,未易解,譌夺甚多,善兰笔受时,辄以意匡补。译成,伟烈亚力叹曰:“西士他日欲得善本,当求诸中国也!”主
伟烈伟烈亚力又言美国天算名家罗密士尝取代数、微分、积分合为一书,分款设题,较若列眉,复与善兰同译之,名曰代微积拾级十八卷。代数变天元、四元,别为新法,微分、积分二术,又借径於代数,实中土未有之奇秘。善兰随体剖析自然,得力於海镜为多。主
粤匪粤匪陷吴、越,依曾国籓军中。同治七年,用巡抚郭嵩焘荐,徵入同文馆,充算学总教习、总理衙门章京,授户部郎中、三品卿衔。课同文馆生以海镜,而以代数演之,合中、西为一法,成就甚众。光绪十年,卒於官,年垂七十。斋
善兰善兰聪彊绝人,其於算,能执理之至简,驭数至繁,故衍之无不可通之数,抉之即无不可穷之理。所著则古昔斋算学,详艺文志。世谓梅文鼎悟借根之出天元,善兰能变四元而为代数,盖梅氏后一人云。古
华衡华衡芳,字若汀,金匮人。能文善算,著有行素轩算学行世。其笔谈一书,犹为生平精力所聚。凡十二卷,第一卷论加、减、乘、除之理;第二卷论通分之理;第三卷论十分数;第四卷论开方之理;第五卷论看题、驭题之法,以明加、减、乘、除、通分、开方之用;第六卷论天元及天元开方;第七卷论方程之术,已寓四元之意,末乃专论四元;第八卷论代数释号及等式;第九卷论代数中助变之数及虚代之法;第十卷论微分;第十一卷论积分,分十六款以明之;第十二卷一论各种算学不外乎加、减、乘、除,二论一切算稿宜笔之於书,三论算学中可以著书之事,四论学算与著书并非两事,五论繙算学之书,六论畴人传当再续。综计自加、减、乘、除、通分以至微分、积分,由浅入深,术本繁难,而括之以简易之旨;理本艰深,而写之以浅显之词。主
又於又於同治十三年,与英士傅兰雅共译代数术二十五卷,衡芳序之曰:“代数之术,其已知、未知之数,皆代之以字,而乘、除、加、减各有记号,以为区别,可如题之曲折以相赴。迨夫层累已明,阶级已见,乃以所代之数入之,而所求之数出焉。故可以省算学之工,而心亦较逸,以其可不假思索而得也。虽然,代数之术诚简便矣,试问工此术者,遂能不病其繁乎?则又不能也。夫人之用心,日进而不已,苟不至昏眊迷乱,必不肯终辍。故始则因繁而求简,及其既简也,必更进焉,而复遇其繁,虽迭代数十次,其能免哉?自是知代数之意,乃为数学中钩深索隐之用,非为浅近之算法设也。若米盐零杂之事,而概欲以代数施之,未有不为市侩所笑者也。至於代数、天元之异同优劣,读此书者自能知之,无待余言也。”古
又与又与傅兰雅共译微积溯源八卷,序之曰:“吾以为古时之算法,惟有加、减而已。其乘与除乃因加减之不胜其繁,故更立二术以使之简易也。开方之法,又所以济除法之穷者也。盖学算者自有加、减、乘、除、开方五法,而一切简易浅近之数,无不可通矣。惟人之心思智虑日出不穷,往往以能人之所不能者为快,遇有窒碍难通之处,辄思立法以济其穷,故有减其所不可减,而正负之名不得不立矣;除其所不受除,而寄母通分之法又不得不立矣。代数中种种记号之法,皆出於不得已而立者也。惟每立一法,必能使繁者为简,难者为易,迟者为速,而算学之境界,藉此得更进一层。如是屡进不已,而所立之法,於是乎日多矣。微分、积分者,盖又因乘、除、开方之不胜其繁,且有窒碍难通之处,故更立此二术以济其穷,又使简易而速者也。试观圜径求周、真数求对数之事,虽无微分、积分之时,亦未尝不可求,惟须乘、除、开方数十百次,其难有不可言喻者。不如
返回目录 上一页 下一页 回到顶部 0 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!