友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
次次小说 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

科学史及与哲学和宗教的关系 作-第48章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  如果我们从伏特的电池取用电流,其强度便迅速地衰减,主要由于铜片的表面上生了一层氢气膜。这种电极化,可用硫酸铜溶液围绕铜片来阻止,这样生成的物质是铜而非氢;或用碳棒代替铜片,把它放在氧化剂如硝酸或重铅酸钾的溶液中,这样所产生的氢气就立刻变为水。

  化学效应

  当伏特的发现的消息在1800年传到英国时,立刻就有人进行广一些基本观察,促成了电化学的诞生。尼科尔森(Nicholson)与卡莱尔(Carlisle)在把伏特电池的原来装置加以改变时发现:如果用两条黄铜丝连结电池的两极,再将两线的他端浸在水中,并使其互相接近,一端有氢气发生,另一端的黄铜线被氧化。如用白金丝或黄金丝来代替黄铜丝,则不发生氧化,氧以气体状态出现。他们注意到氢气的容积约为氧气的二倍,这正是氢氧二气化合成水的比例。他们说明这种现象就是水的分解。他们还注意到使用原来的装置时,电池内也有类似的化学反应。

  不久,克鲁克香克(Cruichshank)分解了氯化镁、碳酸钠(苏打)和氨(阿摩尼亚)溶液,并且从银和铜的溶液中,将这些金属沉淀出来。这一结果以后导致电镀的方法。他又发现在阳极周围的液体变成碱性,而阴极周围的液体变成酸性。

  1806年,戴维爵士(1778…1829年)证明酸与碱的形成是由于水中的杂质的缘故。他在以前已经证明,即使将电极放在两个林中,水的分解也可进行,但须用植物或动物材料将两个杯子联接起来。同时他还证明电效应与电池内化学变化有密切关系。

  伏特认为伽伐尼现象与电是同一现象。这个问题成了许多人研究的题目。到1801年,沃拉斯顿(Wollaston)证明两者发生相同的效果之后,才确定两者确是同一现象。1802年,埃尔曼(Erman)使用验电器测量了伏特电池所提供的电位差。这时,才明白老现象表现“紧张中的电”,而新现象表现“运动中的电”。

  按照公认的惯例,我们一致同意假定电向所谓正电方向流动,即在电池内由锌版流到铜版(或碳棒),在电池外沿着导线由铜流到锌。根据这个惯例,铜版称为电池的正段,而锌版称为负极。

  1804年希辛格尔(Nisinger)与柏采留斯宣布中性盐溶液可用电流分解,酸基出现于一极,金属出现于另一极,因而他们断定:新生性的氢元素并不象以前所假想的那样,是金属从溶液中分离的原因。在当时所知道的金属中,有许多都用这个方法制备出来了,1807年,戴维更分解了当时认为是元素的碳酸钾与碳酸钠。他让强电流通过含水的这两种物质,而分离出惊人的钾与纳金属。戴维是康沃尔城(Cornwall)人,聪明、能干而又会讲话,他做了那时新成立皇家学院的化学讲师,他的讲演趣味丰富,吸引了许多人士参加。

  化学化合物可以用电的方法来分解,说明化学力与电力之间是有联系的。戴维“提出一个假设,说化学的吸力与电的吸力同生于一因,前者作用在质点上,后者作用在质量上”。柏采留斯更将这看法加以发展。我们已经说过,他认为每个化合物都由带相反的电的两份结合而成,这带电的部分可能是一个或一群原子。

  一个可注意的事实是分解的产物只出现于两极。早期的实验者已经注意到这现象,并提出各种不同的解释。1806年,格罗撤斯(Grotthus)设想这是由于溶液中的物质不断地在那里分解与复合,在两极间,互相邻接的分子互换其相反的部分,在这条联链的两端,相反的原子就被释放出来。

  在电化学方面的最初发现以后,中间停顿了一个时期,到后来,大实验家法拉第(Michael Faraday,1791-1867年)才重新拾起这问题来。法拉第是戴维在皇家学院实验室的助手与继承人。

  1833年,法拉第在惠威尔的建议下,制定一套新名词,至今还在使用。他不用pole(极)这个字,因为它含有相引相斥的陈旧观念,而采用electrode(电极)(&&&s=路径)一词,将电流进入溶液的一端叫做anode(阳极),出来的一端叫做Cathode(阴极)。化合物的两部分,循相反的方向在溶液中行动的,叫做ions(离子)(io=我去);走向阴极的叫cations(阴离子),走向阳极的叫ani-ons(阳离子)。他又用electrolysis(电解)(0。一分解)一词来代表整个过程。

  经过一系列的巧妙的实验,法拉第将复杂的现象归纳成为两个简单的结论,即我们所说的法拉第定律。(1)不管电解质或电极的性质是什么,由电解所释出之物的质量与电流强度及通电时间成比例,换句话说即与通过溶液的总电流量成比例。(2)一定量的流量所释出之物的质量与这物质的化学当量成比例.即不与原子量,而与化合量成比例,亦即与原子价除原子量的数值成比例;例如释放1克氢元素,必出现16+2即8克的氧元素。通过一单位电流所释出之物的质量叫做该物质的电化当量。例如1安培的电流(即C.G.S.单位的1/10)通过酸溶液1秒钟之后,即有1.044×10'-5'克的氢被释出来,如用银盐溶液即有0.00118克银分离出来。这样分离出来的银的重量很容易加以精确的秤量,所以后来竟把它作为电流的实用单位即安培的定义。

  法拉第的定律似乎可以应用于一切电解情况;相同的一定电流量总是释放出单位当量的物质。电解必须看做是游动的离子在液体中带着相反的电到相反的方向去。每一离子带一定量的正电或负电,到电极时就释放离子,而失去电荷,只要电动力的强度可以胜过反对的极化力。后来赫尔姆霍茨说:法拉第的工作表明,“如果接受元素是由原子组成的假设,我们就不能不断定:电也分成一定的单元,其作用正和电的原子一样”。如此说来,法拉第的实验不但成为理论电化学及应用电化学以后的发展的基础,而且也是现代原子与电子科学的基础。

  电流的其他性质

  虽然早期实验者的注意主要集中在伽伐尼电流的化学效应上,他们也没有忽视其他现象。不久他们便发现;当电流通过任何导线时,就有热发生,多寡依照导线的性质而不同。这种热效应在现今的电灯、取暖等方面,有极大的实用价值。另一方面,1822年,塞贝克(Seebeck)发现两种不同金属联接成闭合线路时,在其接头处加热,便有电流发生。另外一个更有兴趣的现象是:电流具有使磁针偏转的力量。1820年,哥本哈根的奥斯特(Oersted)发现这一现象。他看见这效应穿过玻璃、金属和其他非磁性的物质而达到磁针。他还认识到,他或他的翻译者所谓的“电冲突”“形成圆圈”,按照我们现在的说法就是:在长而直的电流周围有圆形的磁力线。

  人们,特别是安培(Andre Marie Ampere,1775-1836年)立刻认识到奥斯特的观察结果的重要性,安培指出,不但磁针受了电流周围的力的作用,电流自己也互相发生作用。他用活动的线圈进行实验,来研究这些力的定律,并据数学证明:一切观察到的现象都符合以下的假设:每一长度为dl的电流元,必在其外面的一点上产生cdl sin O/r2的磁力,式内c表电流的强度,r是电流元与这一点之间的距离,O是r与电流方向之间的角度。这样,由电流所生的力又归结到平方反比的定律,因此就同万有引力及磁极间、电荷间的力一致了。这又是走向“场物理学”的另一步。

  自然,这种电流元不能用实验分离出来,但是按照安培的公式,将所有电流单元的效应都加合起来,我们就能计算出电流附近的磁场。

  根据安培的公式,我们也能算出磁场内的电流所受的机械力。在空气中磁极强度m所造成的磁力为m/r2,所以m=cdl sin θ。在磁场H中。所受的机械力是Hm,所以在空气中安培的电流元所受的力为Hcdl sinθ。从这个公式计算实际电路上的机械力,不过是数学问题而已。

  远距通信是从眼睛看得见的信号开始的。散布乡间的许多“烽火台”,是久已废弃的信号岗位的遗迹。它们曾把拿破仑登陆的消息迅速地传达到了伦敦。电方面的每一个新发现都促使人们提出一些使用电报通信的意见,但在安培把他研究电磁所得的结果加以应用以前,这些意见都没有什么结果。在安培的成果发表以后,实际机器的发明与采用,就仅仅是机械师的技巧与金融界的信任问题了。

  1827年左右,欧姆(Georg Simon ohm,1781…1854年)做出很多贡献,帮助从电的现象中抽绎出几种能够确切规定的量来。他用电流强度与电动力的观念代替了当时流行的“电量”和“张力”等模棱的观念。电动力一词相当于静电学中已经使用的“电位”。当张力或压力很高的时候,要将电从一点运到他点,必需要较多的功,因此电位差或电动力可以定义为将一单位的电由一点搬到他点时为了反抗这个电力所作的功。

  欧姆关于电的研究是以傅立叶关于热传导的研究(1800-1814年)为根据的。傅立叶假设热流量与温度的梯度成正比,然后用数学方法建立了热传导的定律。欧姆用电位代替温度,用电代替热,并且用实验证明这些观念的有用。他发现:如电流由伏特电池组或塞贝克温差电偶流出,通过一根均匀的导线,其电位的降落率是一个常数。欧姆定律一般写作:电流c与电动力E成比例,

  c=kE=E/R,

  式内k是一个常数,可名为传导率,而其倒数1/k或R,称为电阻。R只随导体的性质、温度与大小而异,它与导体的长度成正比,而与其横剖面的面积成反比。这后一事实表明电流是在导体的全部质量中均匀地通过。后来发现,在很高远的交流电的情形下,还须加一些修改。

  经安培与欧姆的努力之后,电流的问题已经到了新物理学的重要阶段,因为适当的基本量已经选出,并有了确定的意义,因而给数学上的发展奠定了坚固的基础。

  光的波动说

  十九世纪初年,还有另外一个古老的观念复活起来和确立起来,这便是光的波动说。我们说过:光的波动说在十七世纪只有胡克等人模糊主张过,后来惠更斯才给予它一个比较确定的形式。牛顿根据两个理由加以挥斥。第一,它不能解释物影,因为牛顿以为如果光是波动的话,光波也如声波那样,会绕过阻碍之物。第二,冰洲石的双折射现象说明光线在不同的边上有不同的性质,而在传播方向上颤动的光波不能有这样的差异。托马斯·杨(ThomasYoung,1773-1829年)与弗雷内尔(Augustin Jean Fresnel,1788-1827年)对这个学说赋予近代形式,而克服了这两个困难。不过有一件事是值得回忆的:牛顿以为薄膜的颜色说明光线里的微粒使以太中产生附从波。这个学说与现今用来解释电子性质的理论,惊人地相似。

  杨使一束极狭窄的白光通过屏上的两个针孔,再把一个屏放在第一个屏后面。当穿过两个针孔的光线在第二屏上互相重叠时,就有一串颜色鲜亮的光带出现。这些光带是由于从两个针孔光源而来的同
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!