友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
次次小说 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

千亿个太阳 作者:[德]鲁道夫·基彭哈恩-第13章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



抢砺奂扑慊姑挥写锏降摹T谡饫镆约霸谝院蟮耐贾校颐墙庑┬侨∠!瞿炅湮�3000万年的赫罗图表现出具有观测到的赫罗图的许多特征。在主序上由下往上直到某一光度值为止还有恒星占据,主序右边有红超巨星。图6…3(c)给出从氢燃烧开始,经过6600万年以后的人造星团的赫罗图:主序自上往下有更多的区域已经没有恒星了,而在红巨星区域有一些星(现在已经包括质量稍小一些的星)。图6…3(d)给出了人造星团在42亿年,即成年时期的赫罗图。它和上一个图相比形状完全不同。在主序下部出现一向右的弯曲,然后接着有一个很陡的向上的分支。造成和以前图形不同的原因在于小质量星的演化程不同,因为现在是类太阳恒星运动到红巨星区域了。这个图形的特征结构
  54
  可以在年龄极老的星团中找到,比如可以将人造星团的图和图2…9所示的球状星团的赫罗图相比较。通过比较还可以清楚知道现今理论所达到的极限。观测者会发现和理论完全相同的现象,即恒星集中于主序的下部,以及在一条先向右弯然后向上走的曲线上。此外观测者能在一条接近于水平的带上发现有很多恒星,它们在可见光范围的亮度比太阳大100倍。然而这条所谓的球状星团的赫罗图中的水平分支,在我们的人造星团的赫罗图中是没有的。显然真实星团中所观测到的这些星是处于理论还达不到的演化阶段中。正如前面已经说过的,我们将那些已经历了全部演化阶段而处于理论还不能达到的演化阶段的恒星从人造星团中取消了。以上说明了观测得到的星团赫罗图的基本特性,并确切知道了为什么只有在主序的下面部分有恒星分布,而主序上面部分的恒星已向右拐到红巨星区域。我们相信由计算得到的模型反映出恒星的真实过程。为了说明这点还应提到另外的一个提示。脉动星现在再回到7个太阳质量的恒星的演化程。至今我们还没有进一步讨论,在赫罗图中这颗星多次地穿过了图6…2中由两条平行虚线所夹的一条特殊有趣的带。所有的造父型变星都落在这条带内。造父一是仙王星座中的亮星之一。1784年约翰·古德利克(JohnGoodricke)感觉到这颗星的亮度不是恒定不变的,后面我们还要再次提到这位英年早逝的英国聋哑人的一个重要发现。很快人们发现它是有节奏地变亮和变暗,其周期为5天(见图6…4)。极大时的亮度大约为极小时亮度的2。5倍。以后人们知道了很多这类星。它们的光变周期在1天到40天之间,表面温度大约为5300度。根据它们的光度可以知道,它们不是主序星,而是已经演化了的星,即红超巨星。■7个太阳质量恒星的演化程多次通过这个阶段。第一次是由左向右穿过造父变星带,大约需要几千年。第二次是由右向左穿过它,需要35万年,因为在这之前恒星内部的氦早已开始燃烧,在氦燃烧控制下运动得比较慢。如果一个恒星的演化程穿过造父变星带它将会怎样呢?为什么在这个带内的恒星的光度会发生变化?这种变星的周期又由什么来决定?今天人们知道,不仅恒星的光度会变化,而且恒星还会膨胀和收缩,其周期和光变周期相同,即恒星在脉动。为什么当恒星进入到赫罗图中某一确定的带内时,它就会脉动起来?实际上这个问题在爱丁顿1926年出版的恒星内部结构一书中就已经有了答案。可是在1944年阿瑟·爱丁顿爵士去世时,他还不知道早在20年前他已接近于解决这个问题了。
  55
  1952年苏联数学家谢尔盖·热瓦金(SergejZhevakin)将这个问题和爱丁顿的工作联系起来并又向前推进了一步。然而他的工作开始时并没有受到重视,直到1960—1961年由科罗拉多州博尔德的约翰·考克斯(JohnCox),纽约哥伦比亚大学的教授诺曼·贝克(NormanBaker)和我在慕尼黑通过仔细地计算,才证明爱丁顿…热瓦金理论可以很好地解释造父变星的脉动。虽然我们今天还远远没有达到详细了解这类变星的所有性质的地步,但是大体上已经知道它们为什么会脉动。我想借助一个简单的模型使它形象化,当然这只能解释一些本质的效应。造父变星的箱式模型恒星是通过它本身的引力而聚集在一起的。在一颗普通的恒星里引力和气体压力正好处于平衡。我们常说的恒星的这种平衡性质可以用一个简单的模型来使它形象化。在图6…5(a)中有一个可移动的重活塞从上面将箱子密封起来,箱子内部有被活塞压缩并且逃不出去的气体。虽然重力企图将活塞向下拉,但它不能降到底部,它将停留在箱子的某一高处。因为如果活塞继续向下移动,气体就会被过度地压缩,气体压强将变得很大,迫使活塞又返回到静止位置。如果活塞静止了,那么作用在活塞上的重力和与它相反的气体压力正好处于平衡。这种状态和恒星内部每一点重力和气体压力的平衡状态相当。如果用强力将活塞由平衡位置往下压,然后松开,于是活塞开始振动。如果活塞的位置低于平衡位置,气体压力要大于活塞的重力,活塞将被向上推。如果活塞的位置高于平衡位置,则气体压强过小,重力将把活塞向下拉。这期间它不会简单地就停留在平衡位置上,因为当它处于运动时,它的惯性会使它超过平衡位置,从而使它在两个极端之间来回摆动。这就是说运动活塞是围绕一个中间位置而振动。在这里气体起着弹簧的作用,气体被活塞压缩时所得到的能量又在膨胀时还给活塞,而活塞在再次压缩它时又将能量给予气体,因此没有能量损耗。假定在模型中摩擦很小,可以被忽略,于是活塞就可以任意长时间地作周期振动。这种振动是非阻尼的,就是说活塞偏离中心位置的极大值是不变的。振动的周期由模型的特性决定,例如由活塞的质量以及气体的平均温度决定。■恒星的情况大致和这相似。如果能把恒星从各个方向均匀地压缩,然后又松开,那么增大的气体压强又会把物质从各个方向向外推出去,并且物质被推出时要超过平衡位置。但这又造成重力大于气体压力,重力又要把气体拉向恒星中心,恒星将会脉动起来。一旦它离开了平衡位置,它就会继续振动。恒星振动的周期也和箱式模型的振动周期相似,只要恒星的性质如它的质量和内部的温度分布。已知时,就可以计算出来。
  56
  但是在这里我们无论对箱式模型或是对恒星都太简化了。活塞当然有摩擦损耗。给它一次冲击以后,它的振动会一次比一次减小,振动是阻尼的。经过一段时间以后活塞就停止了(见图6…5(b))。对于恒星来说,摩擦不很大,但有其他对振动起阻尼作用的机制存在。人们可以估计出来,一颗人为振动的恒星,在大多数情况下经过大约5000—10000次振动,也就是经过大约100年以后就会停止下来。但是我们由观测可以知道,造父星本身自1784年被发现以来,一直以不衰减的强度脉动。可是根据以上考虑,它的振动应该在相对较短的时间里降低下来。那么能够维持这颗恒星不断振动的原因何在?爱丁顿在他的书中向人们展示了一种可能的机制。恒星的外层被来自中心的强度很大的辐射所穿过。为了能够用箱式模型来进行模拟,我们可以想象箱子是用对辐射透明的材料制成,辐射自左向右穿过箱子(见图6…5(c))。箱子内的气体假定和恒星气体一样对辐射不是完全透明的,它能吸收一部分辐射。开始时使箱子变热,这样才能使箱内气体和外界的温度差增大,以维持每秒由箱子辐射出去的能量等于通过吸收从辐射中得到的能量。将处于平衡位置的活塞向下推压一小段路程,则气体被压缩,它的压强和温度升高。原则上可以有以下两种可能性,即气体在最大压缩时吸收更多的能量,或者是吸收更少的能量。首先考虑第一种情况。如果在压缩时吸收变大了,那么当活塞在下面时就比在平衡位置时有更多的能量被吸收。由于这一附加的能量,就使得气体变热,压强增大。因为过压使得活塞强烈地向上移动,直到超过它的平衡位置。这时气体比平衡位置时更稀薄,温度更低,因而有较少的能量被吸收,气体又变冷,压强降低,活塞又被迫向下移动。即使有摩擦存在时也是如此。在箱式模型中所发生的,也可以在恒星中发生。如果在恒星的某一层里,当物质被压缩时它同样具有能多吸收一部分能量,并将它转变为热能的特性,那么就能激发穿过恒星的辐射发生振动,因为当恒星被压缩时,由内部向外传递的辐射不能很好地穿过恒星的外层。这时气体变热并使恒星膨胀,即在压缩以后恒星会膨胀。当恒星膨胀到最大时,物质又过于透明,它能比正常情况透过更多的向外辐射,内部就变冷并使恒星收缩,即在膨胀之后又发生新的收缩。恒星物质对于向外的辐射所起的作用相当于一个阀门,这个阀门开和关的节奏和脉动节奏相同。早在1926年爱丁顿在书中就已将这个机制阐明,但当时发生一个不幸的悲剧。在爱丁顿时代,人们对于辐射是怎样穿过恒星的详细过程还了解得很少。当时人们的认识是恒星物质具有相反的性质,即它在压缩时变得更透明,这样就出现和上述相反的效应。吸收机制正好起相反的作用,它不会激发振动,而是阻止振动。这就是爱丁顿直到死前把他提的机制放在一边,而不断去寻找造父变星产生脉动的新的解释的原因。
  57
  热瓦金对旧概念的新研究直到50年代初人们才比较彻底地研究了恒星物质的透明性质。人们知道了爱丁顿的概念在恒星较深的内部是正确的,但在恒星的外层内情况恰好相反,这里可能出现物质在压缩时变得相当不透明。这种情况发生在恒星的表面温度大约正好为5300度左右时。1953年热瓦金在一篇很普通,并且长时间没有被人注意的文章中指出,在一颗造父变星内,外层物质的透明性质正好能克服恒星中其余部分的阻尼作用而使恒星振动起来。因此是爱丁顿的辐射阀门机制使一颗造父变星克服了阻尼作用而维持振动的。1963年,当我们这个慕厄黑小组看到7个太阳质量恒星的演化程5次横过造父变星带时,就进一步想到要将过去诺曼·贝克和我本人1960年在慕尼黑所做过的计算重新再计算一下。这个计算可以检验一颗恒星是否会发生振动。我们发现,当恒星演化程每次穿过造父变星带时,它就会振动,并且振动周期和观测到的周期完全符合。由这个事实我们得知,造父变星以及它们的振动性质都很自然地可以纳入到恒星演化的模式中来,并且绝大部分都能很好地符合。当恒星在赫罗图中的演化程穿过造父变星带时就会振动,而当它的演化程离开造父变星带时,外层内引起振动的机制就不够充分,恒星就停止振动。有一次马丁·史瓦西对此是这样讲的:一颗恒星成为造父变星,就像一个人得了麻疹一样,在得麻疹的这个时期可以清楚地看到麻点,但是以后当它完全消去时,就一点也不会感到这个人还曾经得过这种病。
  58
  7。演化后期的恒星当7个太阳质量的恒星中心部分的氦全部耗尽以后将会发生什么呢?会立即出现一个接一个的能源危机吗?恒星的核心会自己�
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!