友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
次次小说 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

25_清史稿-第166章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



汲芍āS忠樽计溆浦椋抻骨仗旒嘀卫恚渲卫ㄖ餮笕耸谖嗾0四炅拢嗾靼餐佳裕骸叭赵滦卸龋媒ゲ睿ㄐ胄模寄苊芎稀3嫉茸裼评罂汲赏扑闶毕埽菁嗾鹘汀⒓喔毙祉峦撇猓跤形⒉睢S诒驹鲁跻蝗杖帐常嫉裙庋椋挡庥胪扑惴质缓希螂废麓鹘汀⑿祉孪昙有6ㄐ蘩怼!贝又J晁脑拢奕挣稹⒃吕氡沓伞!

  乾隆二年四月,协办吏部尚书事顾琮言:“世宗皇帝允监臣言,请纂修日躔、月离二表,以推日月交合,★交宫过度,晦朔弦望,昼夜永短,以及凌犯,共三十九页,续于历象考成诸表之末。查造此表者,监正西洋人戴进贤;能用此表者,监副西洋人徐懋德与五官正明安图。拟令戴进贤为总裁,徐懋德、明安图为副总裁,尽心考验,增补图说。历象考成内倘有酌改之处,亦令其悉心改正。”敕:“即著顾琮专管。”五月,琮复言:“乞命梅★成为总裁,何国宗协同总裁。”从之。十一月,命庄亲王允禄为总理。 

  三年四月,庄亲王允禄等言:“历象考成一书,其数惟黄赤大距减少二分,馀皆仍新法算书西人第谷之旧。康熙中西人有噶西尼、法兰德等,发第谷未尽之义,其大端有三:其一谓太阳地半径差,旧定为三分,今测祗有十秒;其一谓清蒙气差,旧定地平上为三十四分,高四十五度,祗有五秒,今测地平上止三十二分,高四十五度,尚有五十九秒;其一谓日月五星之本天非平圆,皆为橢圆,两端径长,两腰径短。以是三者,经纬度俱有微差。戴进贤等习知其说,因未经徵验,不敢遽以为是。雍正八年六月朔日食,旧法推得九分二十二秒,今法推得八分十秒,验诸实测,今法为近。故奏准重修日躔、月离新表二差,以续于历象考成之后。臣等奉命增修表解图说,以日躔新表推算,春分比前迟十三刻许,秋分比前早九刻许,冬夏至皆迟二刻许。然以测午正日高,惟冬至比前高二分馀,夏至秋分仅差二三十秒。盖测量在地面,而推算则以地心,今所定地半径差与蒙气差皆与前不同,故推算每差数刻,而测量终不甚相远也。至其立法以本天为隋圆,虽推算较繁,而损益旧数以合天行,颇为新巧。臣等阐明理数,著日躔九篇并表数,乞亲加裁定,附历象考成之后,颜曰御制后编。凡前书已发明者,不复赘述。”报闻。七年,庄亲王允禄等奏进日躔、月离、交宫共书十卷,是为雍正癸卯元法。 

  九年十月,监正戴进贤等言:“灵台仪象志原载星辰约七十年差一度,为时已久,宜改定。康熙十三年修志之时,黄赤大距与今测不同,所列诸表,当逐一增修。三垣二十八宿以及诸星,今昔多寡不同,亦应釐订。”敕庄亲王、鄂尔泰、张照议奏。十一月,议准仍以三人兼管。是年更定罗★、计都名目,又增入紫★为四馀。十七年,庄亲王允禄等言仪象志所载之星,多不顺序,今依次改正,共成书三十卷,赐名仪象考成。是月庄亲王等复奏改正恆星经纬度表,并更定二十八宿值日觜参之前后。敕大学士会同九卿议奏。十二月,大学士傅恆等言:“请以乾隆十九年为始,时宪书之值宿,改觜前参后。”从之。既而钦天监又以推算土星有差减平行三十分,自乾隆以后至道光初,交食分秒渐与原推不合。 

  道光十八年八月,管理钦天监事务工部尚书敬徵言:“自道光四年臣管理监务,查观象台仪器,康熙十三年所制黄赤大距,皆为二十三度三十二分。至乾隆九年重制玑衡抚辰仪,所测黄赤大距,则为二十三度二十九分,是原设诸仪已与天行不合,今又将百年,即抚辰仪亦有差失。臣将抚辰仪更换轴心,诸仪亦量为安置。另制小象限仪一,令官生昼测日行,夜测月星,每逢节气交食,所测实数有与推算不合者,详加考验。知由太阳纬度不合之数,测得黄赤大距较前稍小,其数仅二十三度二十七分。由交节时刻之早晚,考知太阳行度有进退不齐之分。夫太阳行度为推测之本,诸曜宗之。而推日行,又以岁实、气应两心差曰本天最卑行度为据。拟自道光十四年甲午为年根,按实测之数,将原用数稍为损益,推得日行交节时刻,似与实测之数较近。至太阴行度,以交食为考验之大端。近年测过之月食,较原推早者多,迟者少。故于月之平行、自行、交行内量为损益,按现拟之平行,仍用诸均之旧数,推得道光十四年后月食三次。除十七年三月祗见初亏,九月天阴未测,仅测得道光十六年九月十五日月食,与新数所推相近,然仅食一次,尚未可凭,仍须随时考验。现■本年八月十五日月食,谨将新拟用数推算得时刻食分方位,比较原推早见分秒,另缮清单进呈。至期臣等逐时测验,再行据实具奏。”报闻。 

  二十二年六月,敬徵等又言:“每■日月交食,按新拟用数推算,俱与实测相近。至本年六月朔日食,新推较之实测,仅差数秒。是新拟之数,于日行已无疑义,月行亦属近合。今拟先测恆星,以符运度,继考日躔、月离,务合天行。请以道光十四年甲午为元,按新数日行黄赤大距,修恆星、黄赤道经纬度表,即于测算时详考五纬月行,俾恆星、五纬、日月交食等书,得以次第竣事。”从之。是年七月,以敬徵为修历总裁,监正周馀庆、左监副高煜为副总裁。 

  二十五年七月,进呈黄道经纬度表、赤道经纬度表各十三卷,月五星相距表一卷,天汉界度表四卷,经星汇考、星首步天歌、恆星总纪各一卷,为仪象考成续编。至日月交食、五星行度俱阙而未备云。时冬官正司廷栋撰凌犯视差新法,用弧三角布算,以限距地高及星距黄极以求黄经高弧三角,较旧法为简捷。乾隆以后,历官能损益旧法,廷栋一人而已。其不为历官而知历者,梅文鼎、薛凤祚、王锡阐以下,江永、戴震、钱大昕、李善兰为尤著。其阐明中、西历理,实远出徐光启、李之藻等之上焉。 

 





志二十一

        时宪二 

  △推步算术 

  推步新法所用者,曰平三角形,曰弧三角形,曰橢圆形。今撮其大旨,证立法之原,验用数之实,都为一十六术,著于篇。 

  平三角形者,三直线相遇而成。其线为边,两线所夹空处为角。有正角,当全圆四分之一,如甲乙丙形之甲角。有锐角,不足四分之一,如乙、丙两角。有钝角,过四分之一,如丁戊己形之戊角。图形尚无资料 

  角之度无论多寡,皆有其相当之八线。曰正弦、正矢、正割、正切,所有度与九十度相减馀度之四线也,如甲乙为本度,则丙乙为馀度。正弦乙戊,正矢甲戊,正割庚丁,正切庚甲,馀弦乙己,馀矢丙己,馀割辛丁,馀切辛丙。若壬癸为本度,则丑癸为馀度,正弦癸辰,正矢壬辰,馀弦癸卯,馀矢丑卯,馀割子寅,馀切丑寅。以壬癸过九十度无正割、正切,借癸午之子未为正割,午未为正切。若正九十度丑壬为本度,则无馀度,丑子半径为正弦,壬子半径为正矢,亦无正割、正切,并无馀弦、馀矢、馀割、馀切。 

  古定全圆周为三百六十度,四分之一称一象限,为九十度。每度六十分,每分六十秒,每秒六十微。圆半径为十万,后改千万。逐度逐分求其八线,备列于表。推算三角,在九十度内,欲用某度某线,就表取之,算得某线。欲知某度,就表对之。过九十度者,欲用正弦、正割、正切及四馀,以其度与半周相减馀,就表取之。欲用正矢,取馀弦加半径为之。既得某线,欲知某度,就表对得其度与半周相减馀命之。 

  图形尚无资料 

  算平三角凡五术: 

  一曰对边求对角,以所知边为一率,对角正弦为二率,所知又一边为三率,二三相乘,一率除之,求得四率,为所不知之对角正弦。如图甲乙为所知边,丁角为所知对角,乙丁为所知又一边,甲角为所不知对角也。此其理系两次比例省为一次。如图乙丁为半径之比,乙丙为丁角正弦之比。法当先以半径为一率,丁角正弦为二率,乙丁为三率,求得四率中垂线乙丙。既得乙丙,甲乙为半径之比,乙丙又为甲角正弦之比。乃以甲乙为一率,乙丙为二率,半径为三率,求得四率,自为甲角正弦。然后合而算之,以先之一率半径与后之一率甲乙相乘为共一率,先之二率丁角正弦与后之二率乙丙相乘为共二率,先之三率乙丁与后之三率半径相乘为共三率,求得四率,自为先之四率乙丙与后之四率甲角正弦相乘数,仍当以乙丙除之,乃得甲角正弦。后既当除,不如先之勿乘。共二率内之乙丙与三率相乘者也,乘除相报,乙丙宜省。又共三率内之半径与二率相乘者也,共一率内之半径又主除之,乘除相报,半径又宜省。故径以甲乙为一率,丁角正弦为二率,乙丁为三率,求得四率,为甲角正弦。 

  二曰对角求对边,以所知角正弦为一率,对边为二率,所知又一角正弦为三率,求得四率,为所不知对边。此其理具对边求对角,反观自明。 

  三曰两边夹一角求不知之二角,以所知角旁两边相加为一率,相减馀为二率,所知角与半周相减,馀为外角,半之,取其正切为三率,求得四率,为半较角正切。对表得度,与半外角相加,为对所知角旁略大边之角;相减,馀为对所知角旁略小边之角。此其理一在平三角形。三角相并,必共成半周。如图甲乙丙形,中垂线甲丁,分为两正角形。正角为长方之半,长方四角皆正九十度,正角形两锐角斜剖长方,此角过九十度之半几何,彼角不足九十度之半亦几何,一线径过,其势然也。故甲右边分角必与乙角合为九十度,甲左边分角必与丙角合为九十度。论正角形各加丁角,皆成半周,合为锐角形。除去丁角,三角合亦自为半周。故既知一角之外,其馀二角虽不知各得几何度分,必知其共得此角减半周之馀也。一在三角同式形比例。如图丙庚戊形,知丙庚、丙戊两边及丙角。展丙庚为丙甲,连丙戊为甲戊,两边相加。截丙戊于丙丁,为戊丁,两边相减馀。作庚丁虚线,丙庚、丙丁同长,庚丁向圆内二角必同度,是皆为丙角之半外角,与甲辛、辛庚之度等。而庚向圆外之角,即本形庚角大于戊角之半,是为半外角。以庚丁为半径之比,则甲庚即为丁半外角正切之比。半径与正切恆为正角,甲庚与庚丁圆内作两通弦,亦无不成正角故也。又作丁己线,与甲庚平行,庚丁仍为半径之比,丁己又为庚向圆外半较角正切之比。而戊甲庚大形与戊丁己小形,戊甲、戊丁既在一线,甲庚、丁己又系平行,自然同式。故甲戊两边相加为一率,戊丁两边相减馀为二率,甲庚半外角正切为三率,求得四率,自当丁己半较角正切也。 

  四曰两角夹一边求不知之一角,以所知两角相并,与半周相减,馀即得。此其理具两边夹一角。 

  五曰三边求角,以大边为底,中、小二边相并相减,两数相乘,大边除之,得数与大边相加折半为分底大边,相减馀折半为分底小边。乃以中边为一率,分底大边为二率,半径为三率,求得四率,为对小边角馀弦。或以小边为一率,分
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!