友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
次次小说 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

认识与谬误-第54章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



正方形的存在,在不借助第五公设的情况下无法证明,例如,让我们考虑两个在A和D具有直角的全等的等腰三角形ABC,DBC(图24),  并设它们在它们的斜边BC处在一起,以致形成等边的四边形ABCD,欧几里得的头27个命题不足以决定在B和C处的两个相等的(直)角的特点和大小。因为长度的度量和角度的度量根本不同且不可直接比较;因此,关于边和角的相关的头一批命题仅仅是定性的,关于像角之和这样的角的定量定理的绝对必要性从而也是如此。进而要谈到的是,类似于欧几里的27个平面几何命题的定理也可以针对球面和具有恒定负曲率的曲面建立,在这些案例中类似的作图分别在B和C处给出钝角和锐角。          
  第十七节     
  萨凯里的主要成就是他陈述这个问题的形式。如果第五公设包含在余下的欧几里得假定中,那么就可能在没有它帮助的情况下证明,在 A和B处具有直角且AC=BD的四边形ABCD(图25)中,在C和D处的角同样也是直角。另一方面,在这个项目中,C和D或是钝角或是锐角的假定将导致矛盾。换句话说,萨凯里力图从直角、钝角或锐角的假设引出结论。他表明,如果证明这些假设的每一个在一个案例中成立,那么它将在所有案例中都成立。为了证明锐角、直角或钝角的假设的普适有效性,仅仅必须拥有一个其角 2R的三角形。值得注意的是这一事实:萨凯里也谈到支持直角假设的生理-几何学实验。如果线段CD(图25)与垂直于直线AB的相等的垂线的两个端点连结,从第一条线的任何一点N出发在AB上终止的垂线即NM等于CA=DB,那么直角的假设被证明是正确的。萨凯里如实地不认为,与另一个直线等距的线本身是直线并非自明。只要想一想平行于球上的大圆的圆就可以了,该圆没有描绘球上的最短线,不能使它的两面全等。     
  直角假设正确性的另一个实验证明如下。如果表明半圆中的角(图 26)是直角,即 α + β = R,那么2 α + 2 β = 2R是三角形ABC的角之和。如果使半径在半圆上三次对向(subtend),且连结第一个和第四个端点的线通过圆心,那么我们将在C处有(图27)3 α = 2R,从而三个三角形的每一个将有角之和2R。不同大小的等角三角形(相似三角形)的存在同样有待于实验证明。就图28而言,若在B和C处的角给出 β + δ + γ + ε = 4R,则四边形BCB’C’的角之和也是4R。甚至沃利斯(1663)把他对第五公设的证明建立在相似三角形存在的假定上,近代几何学家德尔布吕夫(Delboeuf)从相似假定演绎出整个欧几里得几何学。              
  萨凯里相信,他能够轻而易举地驳倒钝角假设。但是,锐角假设却把困难摆在他的面前,他在对所期望的矛盾的寻求中被带到一个意义最深远的结论,罗巴切夫斯基和鲍耶随后用他们自己的方法重新发现了这些结论。他最终感到不得不把最后命名的假设作为与直线的本性不相容的东西加以拒斥;因为它导致在无穷远处相交的、即在那里具有公共垂线的不同种类的直线之假定。萨凯里在预知和提升后继的阐明这些问题的劳动中没有作许多事情,不过显示出某种倾向于传统观点的偏见。     
  第十八节     
  兰伯特的专题论文(1766)在方法上与萨凯里的方法有关联,但是它在其结论上更进一步,并且给出较少受约束的视野的证据。兰伯特由考虑具有三个直角的四边形出发,审查了从第四个角是直角、钝角或锐角的假定中可能得出的推论。他发觉图形的相似与第二和第三个假定不相容。他发现,要求三角形角之和超过2R的钝角案例在球面几何学中成为真实的,在球面几何学中平行线的困难完全消失了。这导致他猜想,在其中三角形的角之和小于2R的锐角案例可能在具有虚半径的球面上实现。用之和背离2R的量在两个案例中正比于三角形的面积,通过适当地把大三角形分为小三角形可以证明这一点,小三角形在减小时可以变得像我们乐意地那样趋近角之和2R。兰伯特在这个概念上推进得十分接近现代几何学家的观点。人们公认,虚半径r'…1'的球不是可以具体化的几何构图,但是在解析上它是具有负的恒定高斯曲率度量的曲面。从这个例子再次显而易见,在完全缺乏其他支撑点,在有用的办法以其价值必须受到尊重的时期,用符号实验如何也可以把探究引向正确的路线。甚至高斯也显露出具有虚半径球的思想,这一点从他的关于圆周的公式(致舒马赫(Schumacher),1831年7月12日)来看是很明显的。可是,兰伯特实际上不顾一切地相信,他如此接近第五公设的证明,以致能够很容易地提供所需要的东西。     
  第十九节     
  现在,我们可以转向其观点对于几何学概念具有最根本意义,但却仅仅用口头或信件简要报告他们看法的研究者。“高斯认为几何学只不过是在逻辑上连贯的作图体系,它具有作为公理被置于顶点的平行理论;可是,他得以确信,这个命题不能被证明,尽管人们从经验——例如从连结布罗肯( Brocken)、霍恩哈根(Hohenhagen)和因塞尔斯堡(Inselsberg)的三角形的角度——知道它是近似正确的。但是,如果不承认这个公理,那么他坚决主张,由于不接受它便产生了不同的和完全独立的几何学,他曾经研究过这种几何学,并用反欧几里得几何学的名字称呼它。”按照萨尔托里乌斯·冯·瓦尔特斯豪森(sartoriusvon Waltershausen)的看法,高斯的观点就是这样的。         
    由这一点开始, O。斯托尔茨在他的十分有教益的小册子中力图从纯粹可观察的经验事实中演绎欧几里得几何学的主要命题。在这里,设给出(图29)一个具有用之和2R的大三角形ABC。我们在BC上画垂线AD,通过BAE≈ABD和CAF≈ACD完成图形,并把全等图形CBHA”G添加到图形BCFAE之中。于是,我们得到单个矩形,因为在E,F,G,H处的角是直角,在A,C,A’,B处的角是平角(等于2R),因此边界线是直线且对顶角相等。通过与在矩形的边之一的中点垂直的垂线,能够把该矩形分为两个全等的矩形,继续这一程序,可以把平分线引到我们在被分割的边上乐意的任何点。相同的作法对于其他两边而言也为真。     
  因此,从给定的矩形 ABCD(图30)切出相互之间具有形成任何比例的边的较小的矩形AMQP,是有可能的。这个最后的矩形的对角线把它分成两个全等的直角三角形,其中每一个不管边的比例,具有角之和2R。每一个非直角三角形能够通过画垂线被分解为直角三角形,其中每一个能够再次被分解为具有更小边的直角三角形,以致每一个三角形的角之和终归是2R,倘使这对一个三角形严格为真的话。借助这些基于观察的命题,我们容易得出结论,矩形的(或任何所谓的平行四边形)的对边不管延长得多么远,处处离开的距离相同,也就是,永远也不相交。它们具有欧几里得平行的性质,可以像这样称呼和定义。现在,从三角形和矩形的性质同样可得,如此被第三条直线相交的两直线,致使它们同一侧的内角之和小于两直角,它们在该侧相交,但是在二者之中的任一方向,它们从它们的交点起将运动得相互无限地远离。因此,直线是无穷的。是作为公理或初始原理陈述的无根据的断言的东西,作为推理的结果可以具有健全的意义。     
  第二十节     
  因此,几何学是由把数学应用于关于空间的经验构成的。像数学物理学一样,它只有在它描述经验对象的条件下,借助图式化和理想化的概念,才能变成精密的演绎的科学。恰如力学能够断定质量的恒定性,或把物体之间的相互作用仅仅在观察误差限度内还原为简单的加速度一样,同样地也仅仅能够在相似限制内坚持直线、面的存在,角之和的量等等。但是,正像物理学有时发现它自己被强使用其它比较普遍的假定代替它的理想的假定,用依赖距离的加速度取代落体的恒定加速度,用热的可变量而不是热的恒定量一样,当事实要求相似的程序或该程序对科学的阐明暂时是必要的时候,也同样容许它在几何学中存在。现在勒让德(Legendre)、罗巴切夫斯基和两个鲍耶的努力将显示在他们的新见解中,较年轻的那位鲍耶可能直接受到高斯的激励。     
  第二十一节     
  我们将不谈及也是高斯同代人的施韦卡特( Schweickart)和陶里努斯(Taurinus)的辛劳。罗巴切夫斯基的工作是变得为思想界的人所知,并且如此富有成果的第一个(1829)。此后不久,较年轻的鲍耶的出版物发表了(1833),它与罗巴切夫斯基的在所有基本之点一致,只是在它的发展形式上有所偏离。根据原文(1899年出版),可以容许假定,罗巴切夫斯基也着手他的研究,以期望由于反驳欧几里得公理而变得陷入矛盾之中。但是,在他发现他自己在这一期待中犯了错误之后,他具有理智勇气从这个事实引出全部推论。罗巴切夫斯基以综合的形式给出了他的结论。不过,我们能够相当有理由地想像为构造他的几何学铺平道路的一般的分析思考。               
  从处在直线 g(图31)之外的一点向下引垂线p,通过平面pg内的同一点画直线h,使它与垂线成锐角s。在作出g和h不相交、但在稍微减小一点点角s时它们会相交的假定时,空间的均匀性立即迫使我们得出结论:具有同一角s的第二条线k本身在垂线的另一侧举止相似。因此,通过同一点所画的所有不相交的线都位于h和k之间。后者形成相交的线和不相交的线之间的边界,罗巴切夫斯基称其为平行。     
  在《几何学的新原理》( 1835)的引言中,罗巴切夫斯基证明他自己是一位彻底的自然探究者。没有一个人会想到把下述未加工的观点甚至归因于有感官的普通人:“平行角”比直角小得多,当稍加延长时能够清晰地看到,它们能够相交。在这里所考虑的关系只容许在歪曲了真实比例的绘图中表示,相反地我们必须想象,由于截量(cut)的维度,s偏离直角的变化如此之小,以致h和k表面看来难以区分地重合起来。现在把垂线p延长到超过它与h的交点的一点,并通过它的端点画新线l平行于h,从而也平行于g,由此可得,平行角s’必然小于s,倘若h和l不再满足欧几里得案例的条件的话。以相同的方式继续延长垂线和画平行,我们得到不断减小的平行角。现在,考虑更远离的、从而在收敛一侧更急剧收敛的平行,我们将在不与先前的假定抵触的情况下,被迫从逻辑的角度假定,在趋近或垂线的长度减小时,平行角将再次增大,因此,平行性的角是垂线p的反函数,罗巴切夫斯基用II(p)来标示它。平面上的平行群之排列在图32中用图解表示。它们都相互对称地趋近它们收敛的一侧。空间的均匀性要求能够使两个平行之间的每一个“条带”与每一个另外的条带重合,倘若把它在纵向上移动所需要的距离的话。      
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!